Como sacar el area de un circulo

Como sacar el area de un circulo

Cómo encontrar el área de un círculo con el radio

Este artículo fue escrito por Grace Imson, MA. Grace Imson es una profesora de matemáticas con más de 40 años de experiencia docente. En la actualidad, Grace es instructora de matemáticas en el City College de San Francisco y anteriormente estuvo en el Departamento de Matemáticas de la Universidad de Saint Louis. Ha enseñado matemáticas en los niveles de primaria, secundaria, bachillerato y universidad. Tiene un máster en Educación, especializado en Administración y Supervisión por la Universidad de Saint Louis.
Un problema común en la clase de geometría es hacer que calcules el área de un círculo basándote en la información proporcionada. Usted necesita saber la fórmula para encontrar el área de un círculo, A=πr2{displaystyle A=\pi r^{2}}. La fórmula es sencilla y sólo necesita el radio del círculo para encontrar su área. Sin embargo, también hay que practicar la conversión de algunos otros datos proporcionados en términos que pueden ayudarte a utilizar esta fórmula.
Este artículo fue escrito por Grace Imson, MA. Grace Imson es una profesora de matemáticas con más de 40 años de experiencia docente. Actualmente, Grace es instructora de matemáticas en el City College de San Francisco y anteriormente estuvo en el Departamento de Matemáticas de la Universidad de Saint Louis. Ha enseñado matemáticas en los niveles de primaria, secundaria, bachillerato y universidad. Tiene un máster en Educación, especializado en Administración y Supervisión por la Universidad de Saint Louis. Este artículo ha sido visto 5.306.168 veces.

Cómo encontrar el radio de un círculo

En geometría, el área encerrada por un círculo de radio r es πr2. La letra griega π representa la relación constante entre la circunferencia de cualquier círculo y su diámetro, que es aproximadamente igual a 3,1416.
Un método para derivar esta fórmula, que tiene su origen en Arquímedes, consiste en considerar el círculo como el límite de una secuencia de polígonos regulares. El área de un polígono regular es la mitad de su perímetro multiplicado por la distancia de su centro a sus lados, y la fórmula correspondiente -que el área es la mitad del perímetro por el radio-, es decir, A = 1/2 × 2πr × r, se cumple en el límite para un círculo.
Aunque en contextos informales se suele hablar del área de un círculo, en sentido estricto el término disco se refiere al interior del círculo, mientras que el círculo se reserva sólo para el límite, que es una curva y no cubre ningún área en sí. Por lo tanto, el área de un disco es la frase más precisa para el área encerrada por un círculo.
Las matemáticas modernas pueden obtener el área utilizando los métodos del cálculo integral o de su descendiente más sofisticado, el análisis real. Sin embargo, el área de un disco fue estudiada por los antiguos griegos. Eudoxo de Cnidus, en el siglo V a.C., descubrió que el área de un disco es proporcional a su radio al cuadrado[1]. Arquímedes utilizó las herramientas de la geometría euclidiana para demostrar que el área dentro de un círculo es igual a la de un triángulo rectángulo cuya base tiene la longitud de la circunferencia del círculo y cuya altura es igual al radio del círculo en su libro Medición de un círculo. La circunferencia es 2πr, y el área de un triángulo es la mitad de la base por la altura, lo que da como resultado el área π r2 del disco. Antes de Arquímedes, Hipócrates de Quíos fue el primero en demostrar que el área de un disco es proporcional al cuadrado de su diámetro, como parte de su cuadratura de la luna de Hipócrates,[2] pero no identificó la constante de proporcionalidad.

Cómo encontrar el perímetro de un círculo

Soluciones[ \textbf{diámetro} \, d = 2r \]\[d = 2 \times 12 \]\[d = 24 \]\[\textbf{circunferencia} \, C = 2 \pi r \]\[C = 2 \pi \times 12 \]\[C = 24 \pi \]\[C = 75. 3982237 \N – A = \pi r^2 \N – [A = \pi \N – 12^2 \N – [A = 144 \pi \N – [A = 452.389342 \N -]
Unidades: Tenga en cuenta que las unidades de longitud se muestran por conveniencia. No afectan a los cálculos. Las unidades están para dar una indicación del orden de los resultados, como pies, pies2 o pies3. Se puede sustituir por cualquier otra unidad base.

Cómo hallar la circunferencia de un círculo

Vamos a hacer un recorrido por la información más esencial sobre el área de un círculo, su diámetro y su radio. Aprenderemos a encontrar el área de un círculo, hablaremos de la fórmula del área de un círculo y discutiremos las otras ramas de las matemáticas que utilizan la misma ecuación.¿Cómo calcular el área de un círculo? Fórmula del área del círculo
El área de un círculo hallada con las calculadoras de radio y diámetro sirve de base para muchas otras ecuaciones, no sólo en matemáticas, sino también en la vida cotidiana. He aquí algunos ejemplos en los que puede ser útil saber cómo encontrar el área de un círculo:

Acerca del autor

admin

admin

Ver todos los artículos