Imagenes de la matematica

Imagenes de la matematica

Imágenes musicales

De forma más general, la evaluación de una función f dada en cada elemento de un subconjunto A dado de su dominio produce un conjunto, llamado “imagen de A bajo (o a través) de f “. Del mismo modo, la imagen inversa (o preimagen) de un subconjunto B dado del codominio de f, es el conjunto de todos los elementos del dominio que mapean a los miembros de B.
. Esta convención es común; el significado previsto debe deducirse del contexto. Esto hace que f[.] sea una función cuyo dominio es el conjunto de potencias de X (el conjunto de todos los subconjuntos de X), y cuyo codominio es el conjunto de potencias de Y. Para más información, véase § Notación.
La imagen inversa de un singleton, denotada por f -1[{y}] o por f -1[y], también se llama fibra sobre y o conjunto de nivel de y. El conjunto de todas las fibras sobre los elementos de Y es una familia de conjuntos indexados por Y.
Por ejemplo, para la función f(x) = x2, la imagen inversa de {4} sería {-2, 2}. De nuevo, si no hay riesgo de confusión, f -1[B] puede denotarse como f -1(B), y f -1 también puede considerarse como una función del conjunto de potencias de Y al conjunto de potencias de X. La notación f -1 no debe confundirse con la de función inversa, aunque coincide con la habitual para las biyecciones en que la imagen inversa de B bajo f es la imagen de B bajo f -1.

Imágenes del día de las matemáticas

De forma más general, la evaluación de una función dada f en cada elemento de un subconjunto dado A de su dominio produce un conjunto, llamado “imagen de A bajo (o a través) de f “. Del mismo modo, la imagen inversa (o preimagen) de un subconjunto B dado del codominio de f, es el conjunto de todos los elementos del dominio que mapean a los miembros de B.
. Esta convención es común; el significado previsto debe deducirse del contexto. Esto hace que f[.] sea una función cuyo dominio es el conjunto de potencias de X (el conjunto de todos los subconjuntos de X), y cuyo codominio es el conjunto de potencias de Y. Para más información, véase § Notación.
La imagen inversa de un singleton, denotada por f -1[{y}] o por f -1[y], también se llama fibra sobre y o conjunto de nivel de y. El conjunto de todas las fibras sobre los elementos de Y es una familia de conjuntos indexados por Y.
Por ejemplo, para la función f(x) = x2, la imagen inversa de {4} sería {-2, 2}. De nuevo, si no hay riesgo de confusión, f -1[B] puede denotarse como f -1(B), y f -1 también puede considerarse como una función del conjunto de potencias de Y al conjunto de potencias de X. La notación f -1 no debe confundirse con la de función inversa, aunque coincide con la habitual para las biyecciones en que la imagen inversa de B bajo f es la imagen de B bajo f -1.

Comentarios

De forma más general, la evaluación de una función dada f en cada elemento de un subconjunto dado A de su dominio produce un conjunto, llamado “imagen de A bajo (o a través) de f “. Del mismo modo, la imagen inversa (o preimagen) de un subconjunto B dado del codominio de f, es el conjunto de todos los elementos del dominio que mapean a los miembros de B.
. Esta convención es común; el significado previsto debe deducirse del contexto. Esto hace que f[.] sea una función cuyo dominio es el conjunto de potencias de X (el conjunto de todos los subconjuntos de X), y cuyo codominio es el conjunto de potencias de Y. Para más información, véase § Notación.
La imagen inversa de un singleton, denotada por f -1[{y}] o por f -1[y], también se llama fibra sobre y o conjunto de nivel de y. El conjunto de todas las fibras sobre los elementos de Y es una familia de conjuntos indexados por Y.
Por ejemplo, para la función f(x) = x2, la imagen inversa de {4} sería {-2, 2}. De nuevo, si no hay riesgo de confusión, f -1[B] puede denotarse como f -1(B), y f -1 también puede considerarse como una función del conjunto de potencias de Y al conjunto de potencias de X. La notación f -1 no debe confundirse con la de función inversa, aunque coincide con la habitual para las biyecciones en que la imagen inversa de B bajo f es la imagen de B bajo f -1.

Imágenes de biología

De forma más general, la evaluación de una función dada f en cada elemento de un subconjunto dado A de su dominio produce un conjunto, llamado “imagen de A bajo (o a través) de f “. Del mismo modo, la imagen inversa (o preimagen) de un subconjunto B dado del codominio de f, es el conjunto de todos los elementos del dominio que mapean a los miembros de B.
. Esta convención es común; el significado previsto debe deducirse del contexto. Esto hace que f[.] sea una función cuyo dominio es el conjunto de potencias de X (el conjunto de todos los subconjuntos de X), y cuyo codominio es el conjunto de potencias de Y. Para más información, véase § Notación.
La imagen inversa de un singleton, denotada por f -1[{y}] o por f -1[y], también se llama fibra sobre y o conjunto de nivel de y. El conjunto de todas las fibras sobre los elementos de Y es una familia de conjuntos indexados por Y.
Por ejemplo, para la función f(x) = x2, la imagen inversa de {4} sería {-2, 2}. De nuevo, si no hay riesgo de confusión, f -1[B] puede denotarse como f -1(B), y f -1 también puede considerarse como una función del conjunto de potencias de Y al conjunto de potencias de X. La notación f -1 no debe confundirse con la de función inversa, aunque coincide con la habitual para las biyecciones en que la imagen inversa de B bajo f es la imagen de B bajo f -1.

Acerca del autor

admin

admin

Ver todos los artículos