Diferentes tipos de triángulos
Contenidos
7 tipos de triángulos
¿Cómo se identifican las formas? Muchos niños empiezan contando el número de lados. Por ejemplo, si ves una forma con cuatro lados, ¿qué sería? Dependiendo de la longitud de los lados, tienes un cuadrado o un rectángulo.
Si te encuentras con una forma de tres lados, ¿cómo la llamas? Si has dicho triángulo, ¡lo tienes! ¿Pero qué tipo de triángulo es? ¿Sabías que hay más de un tipo de triángulo? Es cierto. El simple triángulo de tres lados puede definirse de varias maneras.
Además de tres lados, todo triángulo tiene también tres ángulos. Esos tres ángulos siempre suman 180º. Los matemáticos han dado a los triángulos nombres especiales en función de cuántos de esos ángulos son iguales.
Un triángulo isósceles tiene dos ángulos iguales (y dos lados iguales). Los ángulos pueden variar, siempre que dos sean iguales. Por ejemplo, un triángulo con dos ángulos de 70º y uno de 40º sería un triángulo isósceles.
Si has contado con atención, sabes que hay una opción más. Si un triángulo no tiene dos o tres ángulos iguales, podría tener cero ángulos iguales. Estos triángulos, que tampoco tienen lados iguales, se conocen como triángulos escalenos.
Tipos de triángulos en función de los lados
En matemáticas, el triángulo es una de las formas básicas utilizadas con fines educativos. En términos sencillos, un triángulo se refiere a un polígono o una estructura particular que tiene tres lados. Sin embargo, puede tener diferentes formas y, por tanto, existen diferentes tipos de triángulos.
En este artículo hablaremos de varios tipos de triángulos y de sus definiciones. Antes de hablar de los tipos de triángulos, entendamos primero la definición de triángulo, incluyendo sus propiedades generales:
Como su nombre indica, un triángulo se refiere a una forma 2D (bidimensional) cerrada por la unión de los tres lados. En otras palabras, un triángulo se define como un polígono que contiene tres ángulos, tres esquinas y tres vértices conectados para crear una forma cerrada.
Nota: Un triángulo siempre tiene tres lados y tres ángulos, independientemente de su forma. Además, la suma de los tres ángulos (ángulos interiores) de cualquier triángulo siempre sumará 180 grados, lo que se conoce como la “propiedad de suma de ángulos del triángulo”.
En concreto, los triángulos son formas que unen tres lados y tres ángulos correspondientes. Sin embargo, en general hay seis tipos de triángulos, y cada tipo tiene un nombre y unas características específicas. El tipo de triángulo se define en función de la longitud de sus medidas y de los diferentes ángulos. Por lo tanto, los triángulos se dividen principalmente en los dos tipos siguientes:
Comentarios
¿Sabías que nombrar e identificar las formas es una habilidad que tarda en desarrollarse? Los adultos pueden preguntarse por qué es así, teniendo en cuenta que son fácilmente reconocibles y diferenciables. A diferencia de los adultos, a los niños no les resulta tan fácil esta sencilla actividad.
Tienen que aprender y comprender las diferentes propiedades de cada forma, su número de dimensiones, etc. Los niños no encuentran todo esto tan fácil como pasear a un perro, por lo que se aconseja dedicar mucho tiempo a repasarlas a una edad temprana para que sus conocimientos sobre las formas se solidifiquen.
Sin embargo, la historia demuestra que varios otros matemáticos lo conocían incluso antes de que naciera Pascal. El triángulo fue descubierto por un matemático persa -Omar Khayyam- y un matemático chino -Chia Hsien- por separado hace miles de años.
Al matemático francés Pascal se le atribuyen varios tipos, propiedades y aplicaciones de los triángulos. De entre ellos, hablaremos ahora, como ya se ha dicho, de los tipos fundamentales de triángulos.
Triángulo escaleno
En la geometría euclidiana, tres puntos cualesquiera, cuando no son colineales, determinan un único triángulo y, simultáneamente, un único plano (es decir, un espacio euclidiano bidimensional). En otras palabras, sólo hay un plano que contiene ese triángulo, y todo triángulo está contenido en algún plano. Si toda la geometría es sólo el plano euclidiano, sólo hay un plano y todos los triángulos están contenidos en él; sin embargo, en espacios euclidianos de mayor dimensión, esto ya no es cierto. Este artículo trata de los triángulos en la geometría euclidiana y, en particular, en el plano euclidiano, salvo que se indique lo contrario.
La terminología para clasificar los triángulos tiene más de dos mil años, ya que se definió en la primera página de los Elementos de Euclides. Los nombres utilizados para la clasificación moderna son una transliteración directa del griego de Euclides o sus traducciones al latín.
Griego: τῶν δὲ τριπλεύρων σχημάτων ἰσόπλευρον μὲν τρίγωνόν ἐστι τὸ τὰς τρεῖς ἴσας ἔχον πλευράς, ἰσοσκελὲς δὲ τὸ τὰς δύο μόνας ἴσας ἔχον πλευράς, σκαληνὸν δὲ τὸ τὰς τρεῖς ἀνίσους ἔχον πλευράς, lit. ’De las figuras trilaterales, un triángulo isopleurón [equilátero] es el que tiene sus tres lados iguales, un isósceles el que tiene sólo dos de sus lados iguales, y un escaleno el que tiene sus tres lados desiguales'[4].