Como encontrar el area de un triangulo

Como encontrar el area de un triangulo

Triángulo equilátero

Los triángulos, especialmente, tienen muchas cualidades y fórmulas únicas que debes conocer, incluida la fórmula del área del triángulo. ¿Cómo se puede calcular el área de un triángulo? No es tan sencillo como en el caso de los rectángulos, pero tampoco es tan difícil como podrías pensar.
El área es la cantidad total de espacio que ocupa una forma bidimensional (o superficie plana). Todas las formas matemáticas -es decir, todos los cuadrados, rectángulos, triángulos, paralelogramos, trapecios, etc.- tienen un área, es decir, una determinada cantidad de espacio que ocupan.
Así, en este ejemplo, si contamos cada unidad (es decir, cada cuadrado) del rectángulo, obtendremos 10 unidades cuadradas para el área del rectángulo. Sin embargo, la otra opción (mucho más rápida) para encontrar el área de un rectángulo es multiplicar la longitud (5 unidades) por la anchura (2 unidades); esto también te dará 10.
A es el área, b es la base del triángulo (normalmente el lado inferior) y h es la altura (una línea recta perpendicular trazada desde la base hasta el punto más alto del triángulo). Esta fórmula también puede escribirse así:

Triángulo escaleno

La forma más habitual de hallar el área de un triángulo es tomar la mitad de la base por la altura. Sin embargo, existen muchas otras fórmulas para hallar el área de un triángulo, dependiendo de la información que se conozca. Utilizando información sobre los lados y los ángulos de un triángulo, es posible calcular el área sin conocer la altura.
Resumen del artículoPara calcular el área de un triángulo, empieza midiendo un lado del triángulo para obtener la base del mismo. A continuación, mide la altura del triángulo midiendo desde el centro de la base hasta el punto situado justo enfrente. Cuando tengas la altura y la base del triángulo, introdúcelas en la fórmula: área = 1/2(bh), donde “b” es la base y “h” es la altura. Para saber cómo calcular el área de un triángulo utilizando las longitudes de cada lado, ¡lee el artículo!

Cómo encontrar el área de un paralelogramo

La fórmula general del área de un triángulo es bien conocida. Aunque la fórmula muestra las letras b y h, en realidad lo importante es el patrón de la fórmula. El área de un triángulo es igual a la ½ de la longitud de un lado por la altura trazada a ese lado (o una extensión de ese lado).
Con esta nueva fórmula, ya no tenemos que depender de encontrar la altitud (altura) de un triángulo para encontrar su área. Ahora, si conocemos dos lados y el ángulo incluido de un triángulo, podemos encontrar el área del triángulo.
Si una pregunta pide una respuesta EXACTA, no uses tu calculadora para encontrar el seno 60º ya que será un valor redondeado. Para obtener un valor EXACTO de sin 60º, utiliza el triángulo especial 30º-60º-90º que da que sin 60º es .
NOTA: El Estándar Básico Común G.SRT.9 establece “Derivar la fórmula A = ½ab sin(C) para el área de un triángulo dibujando una línea auxiliar desde un vértice perpendicular al lado opuesto”. Esta afirmación puede interpretarse como aplicable sólo a los triángulos agudos. Sin embargo, en este sitio se examinarán tanto los triángulos “agudos” como los “obtusos” para derivar la fórmula.

Triángulo

La fórmula más común para encontrar el área de un triángulo es K = ½ bh, donde K es el área del triángulo, b es la base del triángulo y h es la altura. (La letra K se utiliza para el área del triángulo para evitar confusiones cuando se utiliza la letra A para nombrar un ángulo de un triángulo). Hay tres categorías adicionales de fórmulas de área que son útiles.
Tres lados (SSS): Un famoso filósofo y matemático griego, Herón (o Héroe), desarrolló una fórmula que calcula el área de los triángulos dada sólo la longitud de los tres lados. Se conoce como la fórmula de Herón. Si a, b y c son las longitudes de los tres lados de un triángulo, y s es el semiperímetro, entonces

Acerca del autor

admin

admin

Ver todos los artículos