Con que unidades pueden medirse los angulos

Con que unidades pueden medirse los angulos

Una unidad de medida de ángulo se llama

Recuerda siempre que expresar la medida de un ángulo en diferentes unidades no cambia la medida del ángulo (ver conversión de unidades). Podemos decir, por ejemplo, que el Monte Everest tiene 29.028 pies de altura o que tiene 8848 metros de altura. Ambas cosas son ciertas, y no fue necesario ajustar la altitud real del monte Everest. Se mantuvo igual.
El grado (la unidad recibe el símbolo ˚ ) es la medida de ángulo más utilizada. Es la que aprendemos de pequeños y todos tenemos más o menos una buena percepción de los ángulos medidos en grados.
Por ejemplo, estamos familiarizados con los ángulos rectos, que miden 90 grados (90˚) como el ángulo común en la mayoría de los proyectos de construcción, incluyendo los ángulos entre las paredes o las paredes y los techos de la mayoría de los edificios. Los ángulos interiores de un cuadrado o rectángulo son ángulos rectos. Cuando se dice que dos líneas son “cuadradas”, se quiere decir que forman un ángulo recto.
El círculo unitario, llamado así porque el “dial” que se desplaza para formar cualquier ángulo es de una unidad de longitud, muestra que al mover ese dial (o vector) alrededor del punto central de vuelta al punto donde comenzó cubre 360˚ de arco o ángulo. Esto significa que la mitad de un círculo es 180˚, un cuarto de círculo es 90˚, y así sucesivamente.

Definición de medida angular

El concepto de ángulo es uno de los más importantes de la geometría. Los conceptos de igualdad, suma y diferencia de ángulos son importantes y se utilizan en toda la geometría, pero la asignatura de trigonometría se basa en la medición de ángulos.
Hay dos unidades de medida de ángulos que se utilizan habitualmente. La unidad de medida más conocida es la de los grados. Un círculo se divide en 360 grados iguales, por lo que un ángulo recto es de 90°. Por el momento, sólo consideraremos los ángulos comprendidos entre 0° y 360°, pero más adelante, en la sección de funciones trigonométricas, consideraremos los ángulos mayores de 360° y los ángulos negativos.
Los grados pueden dividirse a su vez en minutos y segundos, pero esta división ya no es tan universal como antes. Cada grado se divide en 60 partes iguales llamadas minutos. Así, siete grados y medio pueden llamarse 7 grados y 30 minutos, que se escriben 7° 30′. Cada minuto se divide a su vez en 60 partes iguales llamadas segundos y, por ejemplo, 2 grados 5 minutos 30 segundos se escribe 2° 5′ 30″. La división de los grados en minutos y segundos del ángulo es análoga a la división de las horas en minutos y segundos del tiempo.

Si unidad de ángulo

A un ángulo se le suele dar un valor aritmético que describe su tamaño. Para especificar su valor, se dibuja un ángulo en una posición estándar en un sistema de coordenadas, con su vértice en el centro y un lado, llamado lado inicial, a lo largo del eje x. El valor del ángulo representa entonces la cantidad de rotación necesaria para llegar desde el lado inicial al otro lado, llamado lado terminal. El sentido de la rotación indica el signo del ángulo. Tradicionalmente, una rotación en sentido contrario a las agujas del reloj da un valor positivo y una rotación en sentido de las agujas del reloj da un valor negativo. Los tres términos que se suelen utilizar para expresar el valor de un ángulo son revoluciones, grados o radianes.
La revolución es la unidad de medida más natural de un ángulo. Se define como la cantidad de rotación necesaria para ir desde el lado inicial del ángulo hasta el lado inicial. Una forma de visualizar una revolución es imaginar que se hace girar una rueda una vez. La distancia recorrida por cualquier punto de la rueda es igual a una revolución. A un ángulo se le puede dar un valor basado en la fracción de la distancia que recorre un punto dividida por la distancia recorrida en una rotación. Por ejemplo, un ángulo representado por un cuarto de vuelta de la rueda es igual a 0,25 rotaciones.

Unidades de medida de ángulos

El sistema más antiguo (que se remonta a los babilonios) es el sistema de grados. En este sistema, un círculo completo se divide en 360 grados iguales. Un grado, por tanto, es sólo una parte muy pequeña de un círculo.
Un sistema más natural de medición de ángulos -que se basa en la geometría del propio círculo- es el sistema de radianes. Un radián es el ángulo que se forma cuando se coloca un radio, como un trozo de espagueti mojado, a lo largo del arco s del perímetro de un círculo. Dado que el perímetro completo de cualquier círculo es sólo 2p (un poco más de seis) veces el radio, hay muchos menos radianes que grados en un círculo completo.
La conveniencia del sistema de radianes proviene de la sencilla relación entre la medida del ángulo y la longitud del arco en el círculo. Por definición, un radián corta una longitud de arco de un radio, dos radianes corta una longitud de arco de dos radios, y así sucesivamente. Las dos medidas son proporcionales, siendo el radio la constante de proporcionalidad.

Acerca del autor

admin

admin

Ver todos los artículos