Multiplicacion de quebrados

Cómo enseñar a multiplicar fracciones

La cosa se complica un poco si ambos números son fracciones, pero la idea sigue siendo la misma.    Cada vez que multiplicas un número por una fracción, estás encontrando una parte de ese número.    Si multiplicas 1/4 por 1/2, estás encontrando 1/2 de 1/4.
¿Ves un atajo que podríamos haber utilizado?    Para encontrar la respuesta sin un diagrama, podemos multiplicar los numeradores juntos (1 x 1 = 1) y multiplicar los denominadores juntos (2 x 4 = 8) para obtener la respuesta.
Veamos un ejemplo más para ver si este atajo sigue siendo válido. Digamos que tenemos 2/3 por 4/5.    Esto significa que queremos 2/3 de la fracción 4/5.    Empecemos con una imagen de 4/5.    4/5 significa que el todo se ha dividido en 5 partes iguales y nosotros tenemos 4 de las 5 partes iguales.
Entonces, ¿qué es 2/3 de 4/5?    Cuando dividimos la caja en 3 filas, formamos un rectángulo que mide 5 x 3. Esto nos da un total de 15 piezas iguales.    Sólo queríamos 2/3 de la parte sombreada, así que tenemos que contar sólo lo que está sombreado en 2 de las 3 filas (dentro del recuadro morado mostrado arriba).    Podemos ver que esto nos da 8 piezas iguales de un total de 15: 8/15.

Cómo dividir fracciones

Veamos ahora algo más complejo. También podemos multiplicar dos fracciones. En lugar de grupos enteros, ahora queremos una fracción de un grupo.Para que este concepto sea más fácil de digerir, sería útil dibujar los modelos. Vuelve a Fracciones explicadas si lo necesitas.
En primer lugar, sabemos que los dos tercios se componen de un tercio y de un tercio, es decir, de dos partes (cuadros azules). Como sólo queremos las tres cuartas partes de las dos partes, tenemos que cambiar las dos partes en 4 partes más pequeñas (recuadros rojos y morados). Por último, sólo necesitamos tres de las cuatro partes (cajas rojas). Pero tenemos que contar todas las demás partes que no necesitamos para formar la fracción tres-seisavos.Recuerda que hay que reducirla a la forma más simple, que es, la mitad.

Leer más  Que es una combinación

Multiplicar fracciones por números enteros

Aprender a multiplicar fracciones, ya sea fracción por fracción o multiplicar fracciones por números enteros, es una habilidad importante que todo estudiante de matemáticas debe aprender en algún momento.Esta guía completa para multiplicar fracciones proporcionará un tutorial paso a paso sobre cómo multiplicar fracciones e incluye varios ejemplos, un video animado de mini-lección, y una hoja de trabajo gratuita y la clave de respuestas.Comencemos! Multiplicar fracciones: Repaso de la multiplicaciónAntes de explorar cómo multiplicar fracciones, hagamos un repaso súper rápido de la multiplicación básica:
¿Qué observas en la relación entre las figuras A, B y C? En la figura D, ¿por qué 2 x (1/2) es igual a 1? Regla de la multiplicación de fraccionesPara ayudarte a entender la figura D anterior, empecemos por aprender las reglas de la multiplicación de fracciones:Regla: Siempre que multipliques fracciones juntas, multiplica los numeradores juntos y luego multiplica los denominadores juntos.
Las reglas para multiplicar fracciones son tan sencillas como eso, y aplicar la regla a una variedad de problemas diferentes es igual de fácil. Sigamos adelante y apliquemos esta regla en algunos ejemplos.Ejemplos de multiplicación de fraccionesEjemplo 1 (Multiplicación de fracciones por fracciones): ¿Cuánto es (3/4) x (1/2)?

Suma y resta…

(iii) Multiplicar 11(\frac{7}{8}\) por 3(\frac{1}{24}\)Solución:Convirtamos primero los números mixtos en fracciones impropias.11 \(\frac{7}{8}) = \(\frac{11 × 8 + 7}{8}) = \(\frac{95}{8})3(\frac{1}{24}) = \(\frac{3 × 24 + 1}{24}) = \(\frac{73}{24})Ahora, \(\frac{95}{8}) × \frac{73}{24}) = \frac{95 × 73}{8
Preguntas y respuestas sobre la multiplicación de fracciones:I. Encuentra el producto: (i) \(\frac{5}{19}) × 1(ii) \(\frac{6}{7}) × 5(iii) \(\frac{9}{14}) × 6(iv) \(\frac{4}{13}) × 0(v) \1(\frac{1}{7}) × \frac{5}{6})(vi) 1(\frac{1}{10}) × 8(vii) \frac{1}{7}) × \frac{8}{1})(viii) \(ix) (4) (15) (10) (21) (x) (1) de 100 (xi) (1) de 60 (xii) (4) de 8 (11)) Respuestas: (i) \N(\frac{5}{19})(ii) 4(\frac{2}{7})(iii) 3(\frac{6}{7})(iv) 0(v) \N(\frac{5}{42})(vi) 8(\frac{4}{5})(vii) 1(\frac{1}{7}}(viii) \frac{14}{135}(ix) \frac{8}{63}(x) 50(xi) 20(xii) \frac{32}{55}(II). Multiplica y escribe el producto en términos mínimos. (i) \frac{1}{2}} × 40(ii) \frac{1}{3}} × 150(iii) \frac{2}{7}} × 21(iv) \frac{7}{38}} × 0(v) \frac{31}{65}} × 1(vi) 8 × \frac{17}{24}} (vii) \frac{3}{7}} × \frac{7}{15}) (viii) ¾(¾9¾32¾) × ¾(¾8¾36¾) (ix) ¾(¾11¾15¾) × ¾(¾45¾88¾) (x) ¾(¾2¾10¾) ×¾(¾3¾22¾) ×¾(¾40¾30¾) (xi) ¾(¾1¾6¾) ×¾(¾2¾5¾) ×¾(¾3¾4¾)

Acerca del autor

Rebeca Sánchez

Rebeca Sánchez

Ver todos los artículos