Ejemplo de mediana estadistica

Ejemplo de mediana estadistica

Ejemplos de media, mediana y moda

Tengo una distribución de muestras con un número pequeño de valores en cada una (menos de 10$). He calculado la mediana de cada muestra, que quiero comparar con un modelo y obtener la diferencia entre el modelo y la mediana de cada muestra. Para tener un resultado consistente, necesito un error sobre esta diferencia.
Supongamos que no asumimos nada sobre $\Omega$. En esta situación todavía podemos explotar las estadísticas de orden. Estos son los valores específicos en la muestra ordenada. Para simplificar la notación, ordenemos la muestra de una vez por todas de forma que
Como comprobación, simulemos muchos conjuntos de datos de cualquier distribución, calculemos estos IC para los conjuntos de datos y contemos la proporción de IC que cubren la verdadera mediana. Este ejemplo de R utiliza una distribución Normal:
Si desea utilizar métodos numéricos, puede generar una estimación de la distribución de las medianas utilizando bootstrap. Remuestree repetidamente su muestra y calcule muchas medianas. El stdev de estas medianas sirve como estimación del stdev de la distribución muestral de las medianas. Utilicé un método similar para calcular la incertidumbre de los resultados de las partidas de ajedrez en mi artículo sobre gambitos de ajedrez, que puede encontrarse aquí https://sonoma.academia.edu/JamalMunshi/papers

Modo

En estadística y teoría de la probabilidad, la mediana es el valor que separa la mitad superior de la mitad inferior de una muestra de datos, una población o una distribución de probabilidad. En el caso de un conjunto de datos, puede considerarse como “el valor medio”. La característica básica de la mediana en la descripción de los datos en comparación con la media (a menudo descrita simplemente como “promedio”) es que no está sesgada por una pequeña proporción de valores extremadamente grandes o pequeños, y por lo tanto proporciona una mejor representación de un valor “típico”. La mediana de los ingresos, por ejemplo, puede ser una forma mejor de sugerir cuál es un ingreso “típico”, porque la distribución de los ingresos puede estar muy sesgada. La mediana tiene una importancia fundamental en la estadística robusta, ya que es la estadística más resistente, con un punto de ruptura del 50%: mientras no se contamine más de la mitad de los datos, la mediana no es un resultado arbitrariamente grande o pequeño.
Formalmente, la mediana de una población es cualquier valor tal que como máximo la mitad de la población es menor que la mediana propuesta y como máximo la mitad es mayor que la mediana propuesta. Como se ha visto anteriormente, las medianas pueden no ser únicas. Si cada conjunto contiene menos de la mitad de la población, entonces parte de la población es exactamente igual a la mediana única.

Leer más  Concepto de combinacion

Mediana

En estadística y teoría de la probabilidad, la mediana es el valor que separa la mitad superior de la mitad inferior de una muestra de datos, una población o una distribución de probabilidad. En el caso de un conjunto de datos, puede considerarse como el valor “medio”. La característica básica de la mediana en la descripción de datos en comparación con la media (a menudo descrita simplemente como “promedio”) es que no está sesgada por una pequeña proporción de valores extremadamente grandes o pequeños, y por lo tanto proporciona una mejor representación de un valor “típico”. La mediana de los ingresos, por ejemplo, puede ser una forma mejor de sugerir cuál es un ingreso “típico”, porque la distribución de los ingresos puede estar muy sesgada. La mediana tiene una importancia fundamental en la estadística robusta, ya que es la estadística más resistente, con un punto de ruptura del 50%: mientras no se contamine más de la mitad de los datos, la mediana no es un resultado arbitrariamente grande o pequeño.
Formalmente, la mediana de una población es cualquier valor tal que como máximo la mitad de la población es menor que la mediana propuesta y como máximo la mitad es mayor que la mediana propuesta. Como se ha visto anteriormente, las medianas pueden no ser únicas. Si cada conjunto contiene menos de la mitad de la población, entonces parte de la población es exactamente igual a la mediana única.

Comentarios

En estadística y teoría de la probabilidad, la mediana es el valor que separa la mitad superior de la mitad inferior de una muestra de datos, una población o una distribución de probabilidad. En el caso de un conjunto de datos, puede considerarse como el valor “medio”. La característica básica de la mediana en la descripción de datos en comparación con la media (a menudo descrita simplemente como “promedio”) es que no está sesgada por una pequeña proporción de valores extremadamente grandes o pequeños, y por lo tanto proporciona una mejor representación de un valor “típico”. La mediana de los ingresos, por ejemplo, puede ser una forma mejor de sugerir cuál es un ingreso “típico”, porque la distribución de los ingresos puede estar muy sesgada. La mediana tiene una importancia fundamental en la estadística robusta, ya que es la estadística más resistente, con un punto de ruptura del 50%: mientras no se contamine más de la mitad de los datos, la mediana no es un resultado arbitrariamente grande o pequeño.
Formalmente, la mediana de una población es cualquier valor tal que como máximo la mitad de la población es menor que la mediana propuesta y como máximo la mitad es mayor que la mediana propuesta. Como se ha visto anteriormente, las medianas pueden no ser únicas. Si cada conjunto contiene menos de la mitad de la población, entonces parte de la población es exactamente igual a la mediana única.

Acerca del autor

Rebeca Sánchez

Rebeca Sánchez

Ver todos los artículos